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Quantum is in the air. Lately, it is not unusual at all to see mentions of  quantum 
computing together with Artificial Intelligence and Machine Learning. That might be 
generating some anxiety among Data Scientists and ML practitioners that are already 
catching up with Transformers and DiGusion Models. Don’t panic! The mathematics are 
a little bit complicated, and the intuition (as a matter of fact the “counter-intuitive”) can 
make you feel confused, but once you get the big picture it’s not that hard. This blog entry 
is a high-level (no formulas) introduction to how quantum computing is being integrated 
into Machine Learning.  

 

Hype? 
Obviously, something is going on. Governments, Technology and Communication 
providers are already implementing post quantum cryptography. Others are planning to 
do it in the short term, or at least it’s in their roadmap. This might be the best early warning 
evidence that quantum computing advantage is near. On the other hand, there is the IBM 
roadmap (maybe the most transparent of the market) to build a scalable quantum 
computer (100k qubits by 2026). Google, Microsoft, IonQ, and D-Wave, among others, 
are also working on building stable (fault-tolerant) quantum hardware, and oGering some 
of those services on the cloud (IBM too). The most promising use cases can be found 
within the security, chemistry, and materials. Cryptography, Optimization, and 
Simulations are today the main driving forces to the quantum computing advantage. QML 
is probably the least interesting area of development, mostly because today’s hardware 
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and ML algorithms are good enough to do the job they are designed to do. Especially when 
it comes to Narrow AI. Nevertheless, the emergence of Generative AI is calling for an 
overhaul of the optimization algorithms used while training and tuning the huge number 
of parameters used to build the Foundational AI Models.  

 

https://www.ibm.com/quantum/roadmap  

 

SOTA. Challenges and Advantages of ML 

Most of the SOTA (State-Of-The-Art) is written by physicists. You must have some 
knowledge about the basic concepts of quantum mechanics to understand the potential 
of the information contained in a qubit to foresee what kind of advantages you can get 
from it (e.g. Superposition, Entanglement and Teleportation). The most obvious is the 
idea that a qubit that describes the state of a quantum system contains more information 
than a simple bit. Therefore, in terms of a Data Scientist or a ML practitioner, the first 
important step to start thinking about a quantum implementation of a ML task is to 
represent classical information into quantum states (State Preparation). This task is 
called Data Encoding (e.g. by introducing rotations as inputs, a learnable parameter), and 
it translates bits into a quantum state that maps data into a Hilber space (higher 
dimensional).  

 

“A qubit is a quantum bit. A qubit is like a classical bit in that it can take on 0 or 1 as states, 
but if diGers from a bit in that it can also take on a continuous range of values representing 
a superposition of states.” Jack D. Hidary, 2019, Quantum Computing: An Applied 
Approach, Springer, pg. 17. 

 

So far, this is the easiest way to start thinking about Quantum Machine Learning. 
Moreover, from this process of encoding data into a higher-level space is derived most of 
the widely adopted, tested and successful implementation among all (e.g. Quantum 
SVM). There are other implementations, like a hybrid combination of classical Machine 
Learning that implements a CNN for feature extraction, maps that information into a 
Hilbert space, and later implements a classification algorithm (classical or quantum). 
Some other implementations preprocess the data by PCA or LDA to reduce the 
dimensionality into a suitable vector of n-bits that are then mapped into a n-qubit 
architecture. Finally, there are some pure Quantum Algorithms (implementing “Quantum 
Circuits”) that are showing some improvements in terms of speed up, the size of the 
datasets, and the complexity of the model. However, so far the gaining of eGiciency is not 
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showing a huge improvement in comparison to what a classical Machine Learning 
approach can do. Therefore, though there are some interesting implementations, the 
cost of developing this technology (mainly in terms of skilled scientists) is greater than 
the cost of using classical algorithms.  

 

 

What’s Next? 
Be ready for a change. Start thinking in terms of qubits, Hilbert space, superposition, 
entanglement and teleportation. Build a sandbox with a classical use case, and start 
experimenting with dimension reduction, and data encoding, data visualization, and 
classification. There are some useful platforms to build that kind of architecture (e.g. 
PennyLane open-source platform). So, go for it. Start thinking about quantum bits, gates, 
rotations, and so on.  

 

 

Note: Quantum Circuits are like black boxes (“Oracles”) that are designed by 
experimenting with a combination of Quantum Gates, Superposition and Entanglement. 
According to the SOTA, the “trainable quantum gates”, together with the choice of the 
encoding map, and the final measurements, are used also to bring nonlinearity to the 
pure Quantum Machine Learning algorithms.  

 

Definitions 
"Superposition Principle: "The linear combination of two or more state vectors is another 
state vector in the same Hilbert space and describes another state of the system." Jack 
D. Hidary, 2019, Quantum Computing: An Applied Approach, Springer, pg. 5." 

 

"Entanglement: "Two systems are in a special case of quantum mechanical 
superposition called entanglement if the measurement of one system is correlated with 
the state of the other system in a way that is stronger than correlations in the classical 
world. In other words, the states of the two systems are not separable". Jack D. Hidary, 
2019, Quantum Computing: An Applied Approach, Springer, pg. 7." 
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